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Who am I?



3

First and foremost, I am working 
on software support for video 
codec accelerators
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Things I have been working on
● Codec uAPIs for V4L2 stateless codecs
● A virtual V4L2 stateless codec driver
● GStreamer support for V4L2 stateless codecs
● Video codec virtualization on Chromebooks
● cros-codecs/cros-libva
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Now lets talk about Rust in V4L2 
proper
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What has been done so far?
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What we have so far
● Some POD types (yay for syn/quote support!)
● A *very* thin videobuf2 abstraction (you can create a queue)
● Abstractions for some VIDIOC_* ioctls
● The necessary code to get the driver to probe
● A module that prints to the terminal when processing some 

of the VIDIOC_* ioctls
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Why is the V4L2 subsystem a 
good candidate for Rust?
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Because there are some low-risk 
areas that we can tackle first
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Easy areas to tackle
● Codec libraries, especially the AV1 library
● JPEG parser
● Codec-specific logic in codec drivers (e.g. writing codec 

metadata to MMIO registers)
● Virtual drivers (we love these, they help in testing)
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Why are these easy?
● Self contained
● Do not interact with HW directly
● Easy way for V4L2 maintainers to gauge whether Rust will 

work for them
● If it does not work, it is not much work to rewrite in C
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I discussed that approach 
during the Media Summit 2023
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Roadblocks and feedback
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Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
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Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code
● There must be more contributors working on this
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At the very minimum, we need 
two people working on this
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Also, Collabora is a consultancy, 
which means...
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Business perspective
● Chicken and egg problem

– Hard to find clients interested in sponsoring 

infrastructure work

– Rust looks risky and most companies do not want to take 

such a gamble

– Hard (impossible) to provide deadlines
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In summary: the value 
proposition is a bit unclear
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Open questions:
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Open questions
● What happens if the C API is changed and it breaks the Rust 

bindings? Can we detect automatically?
● Will the above delay the C work, as the Rust code will not 

compile anymore?
● How can we expose a C FFI so that C drivers can use Rust 

code in practice?
● How should maintainability work?
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Quick summary
● Maintainers are not against Rust, but a lot has to happen
● This work needs more people involved
● Hopefully, the subsystem’s maintainership issues will be 

solved by the time we start upstreaming this
● Until then, Collabora can maintain a tree so that people can 

experiment with Rust in V4L2
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But
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Collabora needs sponsors to 
make this happen
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If your company is interested, 
do let me know
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Thank you!
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