
1

Rust in V4L2

Daniel Almeida
Consultant Software Engineer, Collabora
daniel.almeida@collabora.com



2

Who am I?



3

First and foremost, I am working 
on software support for video 
codec accelerators



4

Things I have been working on
● Codec uAPIs for V4L2 stateless codecs
● A virtual V4L2 stateless codec driver
● GStreamer support for V4L2 stateless codecs
● Video codec virtualization on Chromebooks
● cros-codecs/cros-libva



5

Now lets talk about Rust in V4L2 
proper



6

What has been done so far?



7

What we have so far
● Some POD types (yay for syn/quote support!)
● A *very* thin videobuf2 abstraction (you can create a queue)
● Abstractions for some VIDIOC_* ioctls
● The necessary code to get the driver to probe
● A module that prints to the terminal when processing some 

of the VIDIOC_* ioctls



8

Why is the V4L2 subsystem a 
good candidate for Rust?



9

Because there are some low-risk 
areas that we can tackle first



10

Easy areas to tackle
● Codec libraries, especially the AV1 library
● JPEG parser
● Codec-specific logic in codec drivers (e.g. writing codec 

metadata to MMIO registers)
● Virtual drivers (we love these, they help in testing)



11

Why are these easy?
● Self contained
● Do not interact with HW directly
● Easy way for V4L2 maintainers to gauge whether Rust will 

work for them
● If it does not work, it is not much work to rewrite in C



12

I discussed that approach 
during the Media Summit 2023



13

Roadblocks and feedback



14

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is



15

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers



16

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)



17

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code



18

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code
● There must be more contributors working on this



19

At the very minimum, we need 
two people working on this



20

Also, Collabora is a consultancy, 
which means...



21

Business perspective
● Chicken and egg problem

– Hard to find clients interested in sponsoring 

infrastructure work

– Rust looks risky and most companies do not want to take 

such a gamble

– Hard (impossible) to provide deadlines



22

In summary: the value 
proposition is a bit unclear



23

Open questions:



24

Open questions
● What happens if the C API is changed and it breaks the Rust 

bindings? Can we detect automatically?
● Will the above delay the C work, as the Rust code will not 

compile anymore?
● How can we expose a C FFI so that C drivers can use Rust 

code in practice?
● How should maintainability work?



25

Quick summary
● Maintainers are not against Rust, but a lot has to happen
● This work needs more people involved
● Hopefully, the subsystem’s maintainership issues will be 

solved by the time we start upstreaming this
● Until then, Collabora can maintain a tree so that people can 

experiment with Rust in V4L2



26

But



27

Collabora needs sponsors to 
make this happen



28

If your company is interested, 
do let me know



29

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

